网站首页  英汉词典  古诗文  美食菜谱  电子书下载

请输入您要查询的图书:

 

书名 Web安全之强化学习与GAN/智能系统与技术丛书
分类
作者 刘焱编
出版社 机械工业出版社
下载 抱歉,不提供下载,请购买正版图书。
简介
目录

对本书的赞誉

前言

第1章 AI安全之攻与防

 1.1 AI设备的安全

 1.2 AI模型的安全

 1.3 使用AI进行安全建设

 1.4 使用AI进行攻击

 1.5 本章小结

第2章 打造机器学习工具箱

 2.1 TensorFlow

 2.2 Keras

 2.3 Anaconda

 2.4 OpenAI Gym

 2.5 Keras-rl

 2.6 XGBoost

 2.7 GPU服务器

 2.8 本章小结

第3章 性能衡量与集成学习

 3.1 常见性能衡量指标

3.1.1 测试数据

3.1.2 混淆矩阵

3.1.3 准确率与召回率

3.1.4 准确度与F1-Score

3.1.5 ROC与AUC

 3.2 集成学习

3.2.1 Boosting算法

3.2.2 Bagging算法

 3.3 本章小结

第4章 Keras基础知识

 4.1 Keras简介

 4.2 Keras常用模型

4.2.1 序列模型

4.2.2 函数式模型

 4.3 Keras的网络层

4.3.1 模型可视化

4.3.2 常用层

4.3.3 损失函数

4.3.4 优化器

4.3.5 模型的保存与加载

4.3.6 基于全连接识别MNIST

4.3.7 卷积层和池化层

4.3.8 基于卷积识别MNIST

4.3.9 循环层

4.3.10 基于LSTM进行IMDB情感分类

 4.4 本章小结

第5章 单智力体强化学习

 5.1 马尔可夫决策过程

 5.2 Q函数

 5.3 贪婪算法与-贪婪算法

 5.4 Sarsa算法

案例5-1:使用Sarsa算法处理金币问题

 5.5 Q Learning算法

案例5-2:使用Q Learning算法处理金币问题

 5.6 Deep Q Network算法

案例5-3:使用DQN算法处理CartPole问题

 5.7 本章小结

第6章 Keras-rl简介

 6.1 Keras-rl智能体介绍

 6.2 Keras-rl智能体通用

 6.3 Keras-rl常用对象

案例6-1:在Keras-rl下使用SARSA算法处理CartPole问题

案例6-2:在Keras-rl下使用DQN算法处理CartPole问题

案例6-3:在Keras-rl下使用DQN算法玩Atari游戏

 6.4 本章小结

第7章 OpenAI Gym简介

 7.1 OpenAI

 7.2 OpenAI Gym

 7.3 Hello World!OpenAI Gym

 7.4 编写OpenAI Gym环境

 7.5 本章小结

第8章 恶意程序检测

 8.1 PE文件格式概述

 8.2 PE文件的节

 8.3 PE文件特征提取

 8.4 PE文件节的特征提取

 8.5 检测模型

 8.6 本章小结

第9章 恶意程序免杀技术

 9.1 LIEF库简介

 9.2 文件末尾追加随机内容

 9.3 追加导入表

 9.4 改变节名称

 9.5 增加节

 9.6 节内追加内容

 9.7 UPX加壳

 9.8 删除

 9.9 删除debug信息

 9.10 置空可选头的交验和

 9.11 本章小结

第10章 智能提升恶意程序检测能力

 10.1 Gym-Malware简介

 10.2 Gym-Malware架构

10.2.1 PEFeatureExtractor

10.2.2 Interface

10.2.3 MalwareManipulator

10.2.4 DQNAgent

10.2.5 MalwareEnv

 10.3 恶意程序样本

 10.4 本章小结

第11章 智能提升WAF的防护能力

 11.1 常见XSS攻击方式

 11.2 常见XSS防御方式

 11.3 常见XSS绕过方式

 11.4 Gym-WAF架构

11.4.1 Features类

11.4.2 Xss_Manipulator类

11.4.3 DQNAgent类

11.4.4 WafEnv_v0类

11.4.5 Waf_Check类

 11.5 效果验证

 11.6 本章小结

第12章 智能提升垃圾邮件检测能力

 12.1 垃圾邮件检测技术

12.1.1 数据集

12.1.2 特征提取

12.1.3 模型训练与效果验证

12.1.4 模型的使用

 12.2 垃圾邮件检测绕过技术

12.2.1 随机增加TAB

12.2.2 随机增加回车

12.2.3 大小写混淆

12.2.4 随机增加换行符

12.2.5 随机增加连字符

12.2.6 使用错别字

 12.3 Gym-Spam架构

12.3.1 Features类

12.3.2 Spam_Manipulator类

12.3.3 DQNAgent类

12.3.4 SpamEnv_v0类

 12.4 效果验证

 12.5 本章小结

第13章 生成对抗网络

 13.1 GAN基本原理

 13.2 GAN系统架构

13.2.1 噪音源

13.2.2 Generator

13.2.3 Discriminator

13.2.4 对抗模型

 13.3 GAN

 13.4 DCGAN

 13.5 ACGAN

 13.6 WGAN

 13.7 本章小结

第14章 攻击机器学习模型

 14.1 攻击图像分类模型

14.1.1 常见图像分类模型

14.1.2 梯度算法和损失函数

14.1.3 基于梯度上升的攻击原理

14.1.4 基于梯度上升的算法实现

14.1.5 基于FGSM的攻击原理

14.1.6 基于FGSM攻击的算法实现

 14.2 攻击其他模型

案例14-1:攻击手写数字识别模型

案例14-2:攻击自编码器

案例14-3:攻击差分自编码器

 14.3 本章小结

内容推荐

《Web安全之强化学习与GAN》是作者刘焱AI安全三部曲的第三部,重点介绍强化学习和生成对抗网络的基础知识和实际应用,特别是在安全领域中攻防建设的实际应用。全书共14章,第1章介绍AI安全攻防的基础知识,包括针对AI设备和AI模型的攻击,以及使用AI做安全建设的方法;第2章介绍如何打造机器学习工具箱;第3章介绍如何衡量机器学习算法的性能以及集成学习的基本知识;第4章介绍Keras基础知识以及使用方法;第5章介绍强化学习,重点介绍了单智力体强化学习;第6章介绍Keras下强化学习算法的一种实现:Keras-ri;第7章介绍强化学习领域经常使用的OpenAI Gym环境;第8章到第10章介绍基于机器学习的恶意程序识别技术以及常见的恶意程序免杀方法,最后介绍了如何使用强化学习生成免杀程序,并进一步提升杀毒软件的检测能力;第11章介绍如何使用强化学习提升WAF的防护能力;第12章介绍如何使用强化学习提升反垃圾邮件的检测能力;第13章介绍生成对抗网络的基础知识,介绍针对机器学习模型的几种攻击方式,包括如何欺骗图像识别模型让其指鹿为马;第14章介绍攻击机器学习模型和案例分析,以及针对常见强化学习的攻击。本书每个案例都使用互联网公开的数据集并配有基于Python的代码,代码和数据集可以在本书配套的GitHub下载。

编辑推荐

刘焱编著的《Web安全之强化学习与GAN》重点介绍强化学习和生成对抗网络的基础知识和实际应用,特别是在安全领域中攻防建设的实际应用。从AI安全攻防的基础知识,到智能工具的打造,全面介绍如何使用AI技术提升Web安全。本书作者有丰富的实战经验,他在书中用风趣幽默的语言描述了实际工作的体会,包含大量案例,每个案例都使用互联网公开的数据集并配有基于Python的代码,代码和数据集可以在本书配套的GifHub下载,可帮助读者降低学习门槛,快速将最新人工智能成果应用到实际工作中。

随便看

 

Fahrenheit英汉词典电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 frnht.com All Rights Reserved
更新时间:2025/11/23 9:32:28